Internal
problem
ID
[12137]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
841
Date
solved
:
Sunday, October 12, 2025 at 02:22:18 AM
CAS
classification
:
[_rational]
ode:=diff(y(x),x) = (b*x^3+c^2*a^(1/2)-2*c*b*x^2*a^(1/2)+2*c*y(x)^2*a^(3/2)+b^2*x^4*a^(1/2)-2*y(x)^2*a^(3/2)*b*x^2+a^(5/2)*y(x)^4)/a/x^2/y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (Sqrt[a]*c^2 - 2*Sqrt[a]*b*c*x^2 + b*x^3 + Sqrt[a]*b^2*x^4 + 2*a^(3/2)*c*y[x]^2 - 2*a^(3/2)*b*x^2*y[x]^2 + a^(5/2)*y[x]^4)/(a*x^2*y[x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") y = Function("y") ode = Eq(Derivative(y(x), x) - (a**(5/2)*y(x)**4 - 2*a**(3/2)*b*x**2*y(x)**2 + 2*a**(3/2)*c*y(x)**2 + sqrt(a)*b**2*x**4 - 2*sqrt(a)*b*c*x**2 + sqrt(a)*c**2 + b*x**3)/(a*x**2*y(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out