Internal
problem
ID
[12148]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
852
Date
solved
:
Wednesday, October 01, 2025 at 01:00:50 AM
CAS
classification
:
[[_homogeneous, `class C`], _Abel]
ode:=diff(y(x),x) = (alpha^3+y(x)^2*alpha^3+2*y(x)*alpha^2*beta*x+alpha*beta^2*x^2+y(x)^3*alpha^3+3*y(x)^2*alpha^2*beta*x+3*y(x)*alpha*beta^2*x^2+beta^3*x^3)/alpha^3; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (\[Alpha]^3 + \[Alpha]*\[Beta]^2*x^2 + \[Beta]^3*x^3 + 2*\[Alpha]^2*\[Beta]*x*y[x] + 3*\[Alpha]*\[Beta]^2*x^2*y[x] + \[Alpha]^3*y[x]^2 + 3*\[Alpha]^2*\[Beta]*x*y[x]^2 + \[Alpha]^3*y[x]^3)/\[Alpha]^3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") Alpha = symbols("Alpha") BETA = symbols("BETA") y = Function("y") ode = Eq(Derivative(y(x), x) - (Alpha**3*y(x)**3 + Alpha**3*y(x)**2 + Alpha**3 + 3*Alpha**2*BETA*x*y(x)**2 + 2*Alpha**2*BETA*x*y(x) + 3*Alpha*BETA**2*x**2*y(x) + Alpha*BETA**2*x**2 + BETA**3*x**3)/Alpha**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)
TypeError : argument of type Mul is not iterable