54.2.277 problem 855

Internal problem ID [12151]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 855
Date solved : Sunday, October 12, 2025 at 02:24:05 AM
CAS classification : [NONE]

\begin{align*} y^{\prime }&=\frac {y \left (\ln \left (y\right )-1+\ln \left (x \right )+x^{3} \ln \left (x \right )^{2}+2 x^{3} \ln \left (y\right ) \ln \left (x \right )+x^{3} \ln \left (y\right )^{2}\right )}{x} \end{align*}
Maple. Time used: 0.025 (sec). Leaf size: 21
ode:=diff(y(x),x) = y(x)*(ln(y(x))-1+ln(x)+x^3*ln(x)^2+2*x^3*ln(y(x))*ln(x)+x^3*ln(y(x))^2)/x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {{\mathrm e}^{-\frac {4 x}{x^{4}+4 c_1}}}{x} \]
Mathematica. Time used: 0.214 (sec). Leaf size: 31
ode=D[y[x],x] == ((-1 + Log[x] + x^3*Log[x]^2 + Log[y[x]] + 2*x^3*Log[x]*Log[y[x]] + x^3*Log[y[x]]^2)*y[x])/x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {e^{-\frac {4 x}{x^4+4 c_1}}}{x}\\ y(x)&\to \frac {1}{x} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (x**3*log(x)**2 + 2*x**3*log(x)*log(y(x)) + x**3*log(y(x))**2 + log(x) + log(y(x)) - 1)*y(x)/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (x**3*(log(x)**2 + 2*log(x)*log(y(x)) + log(y(x))**2) + log(x) + log(y(x)) - 1)*y(x)/x cannot be solved by the factorable group method