Internal
problem
ID
[12154]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
858
Date
solved
:
Wednesday, October 01, 2025 at 01:01:48 AM
CAS
classification
:
[[_homogeneous, `class C`], _Abel]
ode:=diff(y(x),x) = (a^3+y(x)^2*a^3+2*y(x)*a^2*b*x+a*b^2*x^2+a^3*y(x)^3+3*b*x*y(x)^2*a^2+3*y(x)*a*b^2*x^2+b^3*x^3)/a^3; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (a^3 + a*b^2*x^2 + b^3*x^3 + 2*a^2*b*x*y[x] + 3*a*b^2*x^2*y[x] + a^3*y[x]^2 + 3*a^2*b*x*y[x]^2 + a^3*y[x]^3)/a^3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(Derivative(y(x), x) - (a**3*y(x)**3 + a**3*y(x)**2 + a**3 + 3*a**2*b*x*y(x)**2 + 2*a**2*b*x*y(x) + 3*a*b**2*x**2*y(x) + a*b**2*x**2 + b**3*x**3)/a**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)
TypeError : argument of type Mul is not iterable