54.2.280 problem 858

Internal problem ID [12154]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 858
Date solved : Wednesday, October 01, 2025 at 01:01:48 AM
CAS classification : [[_homogeneous, `class C`], _Abel]

\begin{align*} y^{\prime }&=\frac {a^{3}+y^{2} a^{3}+2 y a^{2} b x +a \,b^{2} x^{2}+y^{3} a^{3}+3 y^{2} a^{2} b x +3 y a \,b^{2} x^{2}+b^{3} x^{3}}{a^{3}} \end{align*}
Maple. Time used: 0.010 (sec). Leaf size: 42
ode:=diff(y(x),x) = (a^3+y(x)^2*a^3+2*y(x)*a^2*b*x+a*b^2*x^2+a^3*y(x)^3+3*b*x*y(x)^2*a^2+3*y(x)*a*b^2*x^2+b^3*x^3)/a^3; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\operatorname {RootOf}\left (\int _{}^{\textit {\_Z}}\frac {1}{\textit {\_a}^{3} a +\textit {\_a}^{2} a +a +b}d \textit {\_a} a -x +c_1 \right ) a -x b}{a} \]
Mathematica. Time used: 0.151 (sec). Leaf size: 92
ode=D[y[x],x] == (a^3 + a*b^2*x^2 + b^3*x^3 + 2*a^2*b*x*y[x] + 3*a*b^2*x^2*y[x] + a^3*y[x]^2 + 3*a^2*b*x*y[x]^2 + a^3*y[x]^3)/a^3; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{\frac {\frac {a+3 b x}{a}+3 y(x)}{\sqrt [3]{\frac {29 a+27 b}{a}}}}\frac {1}{K[1]^3-\frac {3 a^{2/3} K[1]}{(29 a+27 b)^{2/3}}+1}dK[1]=\frac {1}{9} x \left (\frac {29 a+27 b}{a}\right )^{2/3}+c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (a**3*y(x)**3 + a**3*y(x)**2 + a**3 + 3*a**2*b*x*y(x)**2 + 2*a**2*b*x*y(x) + 3*a*b**2*x**2*y(x) + a*b**2*x**2 + b**3*x**3)/a**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : argument of type Mul is not iterable