Internal
problem
ID
[12160]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
865
Date
solved
:
Sunday, October 12, 2025 at 02:25:02 AM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]
ode:=diff(y(x),x) = (1/(1-y(x))/ln(x)/x*ln(y(x)-1)*y(x)-1/(1-y(x))/ln(x)/x*ln(y(x)-1)-f(x))*(1-y(x)); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (1 - y[x])*(-f[x] - Log[-1 + y[x]]/(x*Log[x]*(1 - y[x])) + (Log[-1 + y[x]]*y[x])/(x*Log[x]*(1 - y[x]))); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") f = Function("f") ode = Eq((y(x) - 1)*(-f(x) + y(x)*log(y(x) - 1)/(x*(1 - y(x))*log(x)) - log(y(x) - 1)/(x*(1 - y(x))*log(x))) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x*(y(x) - 1)*f(x)*log(x) + y(x)*log(y(x) - 1) - log(y(x) - 1))/(x*log(x)) cannot be solved by the factorable group method