Internal
problem
ID
[12167]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
872
Date
solved
:
Wednesday, October 01, 2025 at 01:05:31 AM
CAS
classification
:
[_rational, [_1st_order, `_with_symmetry_[F(x),G(x)]`], [_Abel, `2nd type`, `class B`]]
ode:=diff(y(x),x) = 1/5*(-30*x^3*y(x)+12*x^6+70*x^(7/2)-30*x^3-25*y(x)*x^(1/2)+50*x-25*x^(1/2)-25)/(-5*y(x)+2*x^3+10*x^(1/2)-5)/x; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (-5 - 5*Sqrt[x] + 10*x - 6*x^3 + 14*x^(7/2) + (12*x^6)/5 - 5*Sqrt[x]*y[x] - 6*x^3*y[x])/(x*(-5 + 10*Sqrt[x] + 2*x^3 - 5*y[x])); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (70*x**(7/2) - 25*sqrt(x)*y(x) - 25*sqrt(x) + 12*x**6 - 30*x**3*y(x) - 30*x**3 + 50*x - 25)/(5*x*(10*sqrt(x) + 2*x**3 - 5*y(x) - 5)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out