54.2.337 problem 916

Internal problem ID [12211]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 916
Date solved : Sunday, October 12, 2025 at 02:27:14 AM
CAS classification : [NONE]

\begin{align*} y^{\prime }&=\frac {y \left (\ln \left (y\right ) x +\ln \left (y\right )-x -1+x \ln \left (x \right )+\ln \left (x \right )+x^{4} \ln \left (x \right )^{2}+2 x^{4} \ln \left (y\right ) \ln \left (x \right )+x^{4} \ln \left (y\right )^{2}\right )}{x \left (x +1\right )} \end{align*}
Maple. Time used: 0.031 (sec). Leaf size: 73
ode:=diff(y(x),x) = y(x)*(ln(y(x))*x+ln(y(x))-x-1+x*ln(x)+ln(x)+x^4*ln(x)^2+2*x^4*ln(y(x))*ln(x)+x^4*ln(y(x))^2)/x/(1+x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{\frac {-12 \ln \left (x +1\right ) \ln \left (x \right )+\left (-3 x^{4}+4 x^{3}-6 x^{2}+12 c_1 +12 x \right ) \ln \left (x \right )-12 x}{3 x^{4}-4 x^{3}+6 x^{2}+12 \ln \left (x +1\right )-12 c_1 -12 x}} \]
Mathematica. Time used: 0.4 (sec). Leaf size: 50
ode=D[y[x],x] == ((-1 - x + Log[x] + x*Log[x] + x^4*Log[x]^2 + Log[y[x]] + x*Log[y[x]] + 2*x^4*Log[x]*Log[y[x]] + x^4*Log[y[x]]^2)*y[x])/(x*(1 + x)); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {\exp \left (\frac {12 x}{-3 x^4+4 x^3-6 x^2+12 x-12 \log (x+1)+c_1}\right )}{x}\\ y(x)&\to \frac {1}{x} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (x**4*log(x)**2 + 2*x**4*log(x)*log(y(x)) + x**4*log(y(x))**2 + x*log(x) + x*log(y(x)) - x + log(x) + log(y(x)) - 1)*y(x)/(x*(x + 1)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out