1.4.8 problem 8

Internal problem ID [80]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 1. First order differential equations. Section 1.5 (linear equations). Problems at page 54
Problem number : 8
Date solved : Tuesday, September 30, 2025 at 03:42:43 AM
CAS classification : [_linear]

\begin{align*} 3 x y^{\prime }+y&=12 x \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 13
ode:=3*x*diff(y(x),x)+y(x) = 12*x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = 3 x +\frac {c_1}{x^{{1}/{3}}} \]
Mathematica. Time used: 0.015 (sec). Leaf size: 17
ode=3*x*D[y[x],x]+y[x]==12*x; 
DSolve[ode,y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to 3 x+\frac {c_1}{\sqrt [3]{x}} \end{align*}
Sympy. Time used: 0.099 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(3*x*Derivative(y(x), x) - 12*x + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{\sqrt [3]{x}} + 3 x \]