Internal
problem
ID
[12226]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
931
Date
solved
:
Wednesday, October 01, 2025 at 01:15:04 AM
CAS
classification
:
[_rational, [_Abel, `2nd type`, `class C`], [_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]
ode:=diff(y(x),x) = (-3*x^2*y(x)-2*x^3-2*x-x*y(x)^2-y(x)+x^3*y(x)^3+3*x^4*y(x)^2+3*x^5*y(x)+x^6)/x/(x*y(x)+x^2+1); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (-2*x - 2*x^3 + x^6 - y[x] - 3*x^2*y[x] + 3*x^5*y[x] - x*y[x]^2 + 3*x^4*y[x]^2 + x^3*y[x]^3)/(x*(1 + x^2 + x*y[x])); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (x**6 + 3*x**5*y(x) + 3*x**4*y(x)**2 + x**3*y(x)**3 - 2*x**3 - 3*x**2*y(x) - x*y(x)**2 - 2*x - y(x))/(x*(x**2 + x*y(x) + 1)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out