54.2.364 problem 943

Internal problem ID [12238]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 943
Date solved : Wednesday, October 01, 2025 at 01:16:33 AM
CAS classification : [[_1st_order, _with_linear_symmetries], _rational, [_Abel, `2nd type`, `class C`]]

\begin{align*} y^{\prime }&=\frac {-128 x y-24 x^{3}+32 x^{2}-128 x +512 y^{3}+192 x^{2} y^{2}-384 x y^{2}+24 y x^{4}-96 x^{3} y+96 x^{2} y+x^{6}-6 x^{5}+12 x^{4}}{512 y+64 x^{2}-128 x +512} \end{align*}
Maple. Time used: 0.015 (sec). Leaf size: 41
ode:=diff(y(x),x) = (-128*x*y(x)-24*x^3+32*x^2-128*x+512*y(x)^3+192*x^2*y(x)^2-384*x*y(x)^2+24*y(x)*x^4-96*x^3*y(x)+96*x^2*y(x)+x^6-6*x^5+12*x^4)/(512*y(x)+64*x^2-128*x+512); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {x^{2}}{8}+\frac {x}{4}+\operatorname {RootOf}\left (-x +4 \int _{}^{\textit {\_Z}}\frac {\textit {\_a} +1}{4 \textit {\_a}^{3}-\textit {\_a} -1}d \textit {\_a} +c_1 \right ) \]
Mathematica. Time used: 0.166 (sec). Leaf size: 75
ode=D[y[x],x] == (-128*x + 32*x^2 - 24*x^3 + 12*x^4 - 6*x^5 + x^6 - 128*x*y[x] + 96*x^2*y[x] - 96*x^3*y[x] + 24*x^4*y[x] - 384*x*y[x]^2 + 192*x^2*y[x]^2 + 512*y[x]^3)/(512 - 128*x + 64*x^2 + 512*y[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [362^{2/3} x+144 c_1=144 \int _1^{\frac {-11 x^2+22 x-88 y(x)+8}{\sqrt [3]{362} \left (x^2-2 x+8 y(x)+8\right )}}\frac {1}{K[1]^3+\frac {69 K[1]}{362^{2/3}}+1}dK[1],y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (x**6 - 6*x**5 + 24*x**4*y(x) + 12*x**4 - 96*x**3*y(x) - 24*x**3 + 192*x**2*y(x)**2 + 96*x**2*y(x) + 32*x**2 - 384*x*y(x)**2 - 128*x*y(x) - 128*x + 512*y(x)**3)/(64*x**2 - 128*x + 512*y(x) + 512),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out