Internal
problem
ID
[12238]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
943
Date
solved
:
Wednesday, October 01, 2025 at 01:16:33 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _rational, [_Abel, `2nd type`, `class C`]]
ode:=diff(y(x),x) = (-128*x*y(x)-24*x^3+32*x^2-128*x+512*y(x)^3+192*x^2*y(x)^2-384*x*y(x)^2+24*y(x)*x^4-96*x^3*y(x)+96*x^2*y(x)+x^6-6*x^5+12*x^4)/(512*y(x)+64*x^2-128*x+512); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (-128*x + 32*x^2 - 24*x^3 + 12*x^4 - 6*x^5 + x^6 - 128*x*y[x] + 96*x^2*y[x] - 96*x^3*y[x] + 24*x^4*y[x] - 384*x*y[x]^2 + 192*x^2*y[x]^2 + 512*y[x]^3)/(512 - 128*x + 64*x^2 + 512*y[x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (x**6 - 6*x**5 + 24*x**4*y(x) + 12*x**4 - 96*x**3*y(x) - 24*x**3 + 192*x**2*y(x)**2 + 96*x**2*y(x) + 32*x**2 - 384*x*y(x)**2 - 128*x*y(x) - 128*x + 512*y(x)**3)/(64*x**2 - 128*x + 512*y(x) + 512),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out