Internal
problem
ID
[12242]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
947
Date
solved
:
Wednesday, October 01, 2025 at 01:17:38 AM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)]`], _Riccati]
ode:=diff(y(x),x) = 1/2*(2*x^2*cos(x)+2*sin(x)*x^3-2*x*sin(x)+2*x+2*x^2*y(x)^2-4*y(x)*sin(x)*x+4*y(x)*cos(x)*x^2+4*x*y(x)+3-cos(2*x)-2*sin(2*x)*x-4*sin(x)+x^2*cos(2*x)+x^2+4*x*cos(x))/x^3; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (3/2 + x + x^2/2 + 2*x*Cos[x] + x^2*Cos[x] - Cos[2*x]/2 + (x^2*Cos[2*x])/2 - 2*Sin[x] - x*Sin[x] + x^3*Sin[x] - x*Sin[2*x] + 2*x*y[x] + 2*x^2*Cos[x]*y[x] - 2*x*Sin[x]*y[x] + x^2*y[x]^2)/x^3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (2*x**3*sin(x) + 2*x**2*y(x)**2 + 4*x**2*y(x)*cos(x) + 2*x**2*cos(x) + x**2*cos(2*x) + x**2 - 4*x*y(x)*sin(x) + 4*x*y(x) - 2*x*sin(x) - 2*x*sin(2*x) + 4*x*cos(x) + 2*x - 4*sin(x) - cos(2*x) + 3)/(2*x**3),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out