Internal
problem
ID
[12244]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
949
Date
solved
:
Wednesday, October 01, 2025 at 01:21:40 AM
CAS
classification
:
[_rational, [_1st_order, `_with_symmetry_[F(x),G(x)]`], [_Abel, `2nd type`, `class C`]]
ode:=diff(y(x),x) = (x^2*y(x)+x^4+2*x^3-3*x^2+x*y(x)+x+y(x)^3+3*x^2*y(x)^2-3*x*y(x)^2+3*y(x)*x^4-6*x^3*y(x)+x^6-3*x^5)/x/(y(x)+x^2-x+1); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (x - 3*x^2 + 2*x^3 + x^4 - 3*x^5 + x^6 + x*y[x] + x^2*y[x] - 6*x^3*y[x] + 3*x^4*y[x] - 3*x*y[x]^2 + 3*x^2*y[x]^2 + y[x]^3)/(x*(1 - x + x^2 + y[x])); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (x**6 - 3*x**5 + 3*x**4*y(x) + x**4 - 6*x**3*y(x) + 2*x**3 + 3*x**2*y(x)**2 + x**2*y(x) - 3*x**2 - 3*x*y(x)**2 + x*y(x) + x + y(x)**3)/(x*(x**2 - x + y(x) + 1)),0) ics = {} dsolve(ode,func=y(x),ics=ics)