Internal
problem
ID
[12251]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
956
Date
solved
:
Sunday, October 12, 2025 at 02:27:53 AM
CAS
classification
:
[_Bernoulli]
ode:=diff(y(x),x) = 1/(ln(x)+1)*y(x)*(-1-x^(2/(ln(x)+1))*exp(2/(ln(x)+1)*ln(x)^2)*x^2-x^(2/(ln(x)+1))*exp(2/(ln(x)+1)*ln(x)^2)*x^2*ln(x)+x^(2/(ln(x)+1))*exp(2/(ln(x)+1)*ln(x)^2)*x^2*y(x)+2*x^(2/(ln(x)+1))*exp(2/(ln(x)+1)*ln(x)^2)*x^2*y(x)*ln(x)+x^(2/(ln(x)+1))*exp(2/(ln(x)+1)*ln(x)^2)*x^2*y(x)*ln(x)^2)/x; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (y[x]*(-1 - E^((2*Log[x]^2)/(1 + Log[x]))*x^(2 + 2/(1 + Log[x])) - E^((2*Log[x]^2)/(1 + Log[x]))*x^(2 + 2/(1 + Log[x]))*Log[x] + E^((2*Log[x]^2)/(1 + Log[x]))*x^(2 + 2/(1 + Log[x]))*y[x] + 2*E^((2*Log[x]^2)/(1 + Log[x]))*x^(2 + 2/(1 + Log[x]))*Log[x]*y[x] + E^((2*Log[x]^2)/(1 + Log[x]))*x^(2 + 2/(1 + Log[x]))*Log[x]^2*y[x]))/(x*(1 + Log[x])); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (x**2*x**(2/(log(x) + 1))*y(x)*exp(2*log(x)**2/(log(x) + 1))*log(x)**2 + 2*x**2*x**(2/(log(x) + 1))*y(x)*exp(2*log(x)**2/(log(x) + 1))*log(x) + x**2*x**(2/(log(x) + 1))*y(x)*exp(2*log(x)**2/(log(x) + 1)) - x**2*x**(2/(log(x) + 1))*exp(2*log(x)**2/(log(x) + 1))*log(x) - x**2*x**(2/(log(x) + 1))*exp(2*log(x)**2/(log(x) + 1)) - 1)*y(x)/(x*(log(x) + 1)),0) ics = {} dsolve(ode,func=y(x),ics=ics)