Internal
problem
ID
[12256]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
961
Date
solved
:
Wednesday, October 01, 2025 at 01:24:01 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries]]
ode:=diff(y(x),x) = (y(x)^2+2*x*y(x)+x^2+exp(2+2*y(x)^4-4*x^2*y(x)^2+2*x^4+2*y(x)^6-6*y(x)^4*x^2+6*x^4*y(x)^2-2*x^6))/(y(x)^2+2*x*y(x)+x^2-exp(2+2*y(x)^4-4*x^2*y(x)^2+2*x^4+2*y(x)^6-6*y(x)^4*x^2+6*x^4*y(x)^2-2*x^6)); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (E^(2 + 2*x^4 - 2*x^6 - 4*x^2*y[x]^2 + 6*x^4*y[x]^2 + 2*y[x]^4 - 6*x^2*y[x]^4 + 2*y[x]^6) + x^2 + 2*x*y[x] + y[x]^2)/(-E^(2 + 2*x^4 - 2*x^6 - 4*x^2*y[x]^2 + 6*x^4*y[x]^2 + 2*y[x]^4 - 6*x^2*y[x]^4 + 2*y[x]^6) + x^2 + 2*x*y[x] + y[x]^2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (x**2 + 2*x*y(x) + y(x)**2 + exp(-2*x**6 + 6*x**4*y(x)**2 + 2*x**4 - 6*x**2*y(x)**4 - 4*x**2*y(x)**2 + 2*y(x)**6 + 2*y(x)**4 + 2))/(x**2 + 2*x*y(x) + y(x)**2 - exp(-2*x**6 + 6*x**4*y(x)**2 + 2*x**4 - 6*x**2*y(x)**4 - 4*x**2*y(x)**2 + 2*y(x)**6 + 2*y(x)**4 + 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out