Internal
problem
ID
[12262]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
967
Date
solved
:
Wednesday, October 01, 2025 at 01:24:51 AM
CAS
classification
:
[_rational, [_1st_order, `_with_symmetry_[F(x),G(x)]`], _Abel]
ode:=diff(y(x),x) = -1/216*x/(x^2+1)^4*(-513-216*y(x)*x^4-216*y(x)^3-594*x^2*y(x)-96*x^8-540*y(x)^2+64*x^9-288*y(x)*x^8+288*y(x)*x^7+864*y(x)^2*x^5-648*y(x)^3*x^4+432*y(x)^2*x^7-216*y(x)^2*x^6+1008*x^5*y(x)-216*x^6*y(x)^3-648*x^2*y(x)^3-972*x^4*y(x)^2-1296*x^2*y(x)^2+432*x^3*y(x)^2-288*y(x)*x^6-1134*x^2-576*x^5-756*x^3-378*y(x)+720*x^3*y(x)-864*x^4-144*x^7-432*x-456*x^6); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == -1/216*(x*(-513 - 432*x - 1134*x^2 - 756*x^3 - 864*x^4 - 576*x^5 - 456*x^6 - 144*x^7 - 96*x^8 + 64*x^9 - 378*y[x] - 594*x^2*y[x] + 720*x^3*y[x] - 216*x^4*y[x] + 1008*x^5*y[x] - 288*x^6*y[x] + 288*x^7*y[x] - 288*x^8*y[x] - 540*y[x]^2 - 1296*x^2*y[x]^2 + 432*x^3*y[x]^2 - 972*x^4*y[x]^2 + 864*x^5*y[x]^2 - 216*x^6*y[x]^2 + 432*x^7*y[x]^2 - 216*y[x]^3 - 648*x^2*y[x]^3 - 648*x^4*y[x]^3 - 216*x^6*y[x]^3))/(1 + x^2)^4; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(64*x**9 - 288*x**8*y(x) - 96*x**8 + 432*x**7*y(x)**2 + 288*x**7*y(x) - 144*x**7 - 216*x**6*y(x)**3 - 216*x**6*y(x)**2 - 288*x**6*y(x) - 456*x**6 + 864*x**5*y(x)**2 + 1008*x**5*y(x) - 576*x**5 - 648*x**4*y(x)**3 - 972*x**4*y(x)**2 - 216*x**4*y(x) - 864*x**4 + 432*x**3*y(x)**2 + 720*x**3*y(x) - 756*x**3 - 648*x**2*y(x)**3 - 1296*x**2*y(x)**2 - 594*x**2*y(x) - 1134*x**2 - 432*x - 216*y(x)**3 - 540*y(x)**2 - 378*y(x) - 513)/(216*(x**2 + 1)**4) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out