Internal
problem
ID
[12277]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
982
Date
solved
:
Wednesday, October 01, 2025 at 01:26:53 AM
CAS
classification
:
[_Abel]
ode:=diff(y(x),x) = 1/2*y(x)/exp(1/4*x^2)^2*(2*y(x)^2+2*y(x)*exp(1/4*x^2)+2*exp(1/4*x^2)^2+x*exp(1/4*x^2)^2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (y[x]*(2*E^(x^2/2) + E^(x^2/2)*x + 2*E^(x^2/4)*y[x] + 2*y[x]^2))/(2*E^(x^2/2)); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-x*exp(x**2/2) - 2*y(x)**2 - 2*y(x)*exp(x**2/4) - 2*exp(x**2/2))*y(x)*exp(-x**2/2)/2 + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -((x*exp(x**2/2) + 2*y(x)**2 + 2*exp(x**2/2))*exp(x**2)**(1/4) + 2*y(x)*sqrt(exp(x**2)))*y(x)/(2*exp(x**2)**(3/4)) + Derivative(y(x), x) cannot be solved by the factorable group method