54.3.19 problem 1019

Internal problem ID [12314]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1019
Date solved : Wednesday, October 01, 2025 at 01:43:04 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-\left (4 a^{2} b^{2} x^{2} {\mathrm e}^{2 b \,x^{2}}-1\right ) y&=0 \end{align*}
Maple
ode:=diff(diff(y(x),x),x)-(4*a^2*b^2*x^2*exp(2*b*x^2)-1)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=(1 - 4*a^2*b^2*E^(2*b*x^2)*x^2)*y[x] + D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq((-4*a**2*b**2*x**2*exp(2*b*x**2) + 1)*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False