Internal
problem
ID
[12321]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1027
Date
solved
:
Friday, October 03, 2025 at 03:18:23 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)-(n*(n+1)*k^2*JacobiSN(x,k)^2+b)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(b + a*JacobiSN[x, k]^2)*y[x] + D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") b = symbols("b") k = symbols("k") n = symbols("n") y = Function("y") ode = Eq((-b - k**2*n*(n + 1)*JacobiSN(x, k)**2)*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
TypeError : cannot determine truth value of Relational: _n < x