Internal
problem
ID
[12338]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1048
Date
solved
:
Friday, October 03, 2025 at 03:18:28 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)-4*x*diff(y(x),x)+(3*x^2+2*n-1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(-1 + 2*n + 3*x^2)*y[x] - 4*x*D[y[x],x] + D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") n = symbols("n") y = Function("y") ode = Eq(-4*x*Derivative(y(x), x) + (2*n + 3*x**2 - 1)*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False