Internal
problem
ID
[12352]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1062
Date
solved
:
Wednesday, October 01, 2025 at 01:43:39 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)-diff(y(x),x)/x^(1/2)+1/4*(x+x^(1/2)-8)*y(x)/x^2 = 0; dsolve(ode,y(x), singsol=all);
ode=((-8 + Sqrt[x] + x)*y[x])/(4*x^2) - D[y[x],x]/Sqrt[x] + D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) + (sqrt(x) + x - 8)*y(x)/(4*x**2) - Derivative(y(x), x)/sqrt(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -sqrt(x)*Derivative(y(x), (x, 2)) + Derivative(y(x), x) - y(x)/(4*x) - y(x)/(4*sqrt(x)) + 2*y(x)/x**(3/2) cannot be solved by the factorable group method