Internal
problem
ID
[12361]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1071
Date
solved
:
Wednesday, October 01, 2025 at 01:43:51 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)+2*a*diff(y(x),x)*cot(a*x)+(-a^2+b^2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(-a^2 + b^2)*y[x] + 2*a*Cot[a*x]*D[y[x],x] + D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(2*a*Derivative(y(x), x)/tan(a*x) + (-a**2 + b**2)*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (a**2*y(x) - b**2*y(x) - Derivative(y(x), (x, 2)))*tan(a*x)/(2*a) cannot be solved by the factorable group method