Internal
problem
ID
[12365]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1084
Date
solved
:
Friday, October 03, 2025 at 03:18:39 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)-(2*diff(f(x),x)/f(x)+diff(diff(g(x),x),x)/diff(g(x),x)-diff(g(x),x)/g(x))*diff(y(x),x)+(diff(f(x),x)/f(x)*(2*diff(f(x),x)/f(x)+diff(diff(g(x),x),x)/diff(g(x),x)-diff(g(x),x)/g(x))-diff(diff(f(x),x),x)/f(x)-v^2*diff(g(x),x)^2/g(x)^2+diff(g(x),x)^2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=-(D[y[x],x]*((2*Derivative[1][f][x])/f[x] - Derivative[1][g][x]/g[x] + Derivative[2][g][x]/Derivative[1][g][x])) + y[x]*(Derivative[1][g][x]^2 - (v^2*Derivative[1][g][x]^2)/g[x]^2 - Derivative[2][f][x]/f[x] + (Derivative[1][f][x]*((2*Derivative[1][f][x])/f[x] - Derivative[1][g][x]/g[x] + Derivative[2][g][x]/Derivative[1][g][x]))/f[x]) + D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") v = symbols("v") y = Function("y") f = Function("f") g = Function("g") ode = Eq((-Derivative(g(x), (x, 2))/Derivative(g(x), x) + Derivative(g(x), x)/g(x) - 2*Derivative(f(x), x)/f(x))*Derivative(y(x), x) + (-v**2*Derivative(g(x), x)**2/g(x)**2 + (Derivative(g(x), (x, 2))/Derivative(g(x), x) - Derivative(g(x), x)/g(x) + 2*Derivative(f(x), x)/f(x))*Derivative(f(x), x)/f(x) + Derivative(g(x), x)**2 - Derivative(f(x), (x, 2))/f(x))*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
TypeError : cannot determine truth value of Relational: _n < x