Internal
problem
ID
[12371]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1090
Date
solved
:
Wednesday, October 01, 2025 at 01:44:02 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=a^2*diff(diff(y(x),x),x)+a*(a^2-2*b*exp(-a*x))*diff(y(x),x)+b^2*exp(-2*a*x)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(b^2*y[x])/E^(2*a*x) + a*(a^2 - (2*b)/E^(a*x))*D[y[x],x] + a^2*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(a**2*Derivative(y(x), (x, 2)) + a*(a**2 - 2*b*exp(-a*x))*Derivative(y(x), x) + b**2*y(x)*exp(-2*a*x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False