54.3.83 problem 1097

Internal problem ID [12378]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1097
Date solved : Wednesday, October 01, 2025 at 01:44:07 AM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} x y^{\prime \prime }-y^{\prime }+a y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 70
ode:=x*diff(diff(y(x),x),x)-diff(y(x),x)+a*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\operatorname {BesselJ}\left (1, 2 \sqrt {a}\, \sqrt {x}\right ) \sqrt {x}\, c_1 +\operatorname {BesselY}\left (1, 2 \sqrt {a}\, \sqrt {x}\right ) \sqrt {x}\, c_2 -x \sqrt {a}\, \left (c_1 \operatorname {BesselJ}\left (0, 2 \sqrt {a}\, \sqrt {x}\right )+c_2 \operatorname {BesselY}\left (0, 2 \sqrt {a}\, \sqrt {x}\right )\right )}{\sqrt {a}} \]
Mathematica. Time used: 0.027 (sec). Leaf size: 45
ode=a*y[x] - D[y[x],x] + x*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to 2 a x \left (c_1 \operatorname {BesselJ}\left (2,2 \sqrt {a} \sqrt {x}\right )-c_2 \operatorname {BesselY}\left (2,2 \sqrt {a} \sqrt {x}\right )\right ) \end{align*}
Sympy. Time used: 0.102 (sec). Leaf size: 34
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a*y(x) + x*Derivative(y(x), (x, 2)) - Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x \left (C_{1} J_{2}\left (2 \sqrt {a} \sqrt {x}\right ) + C_{2} Y_{2}\left (2 \sqrt {a} \sqrt {x}\right )\right ) \]