54.3.146 problem 1160

Internal problem ID [12441]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1160
Date solved : Wednesday, October 01, 2025 at 01:45:03 AM
CAS classification : [[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }+a y&=0 \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 23
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)+a*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \sin \left (\sqrt {a}\, \ln \left (x \right )\right )+c_2 \cos \left (\sqrt {a}\, \ln \left (x \right )\right ) \]
Mathematica. Time used: 0.013 (sec). Leaf size: 30
ode=a*y[x] + x*D[y[x],x] + x^2*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 \cos \left (\sqrt {a} \log (x)\right )+c_2 \sin \left (\sqrt {a} \log (x)\right ) \end{align*}
Sympy. Time used: 0.205 (sec). Leaf size: 199
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a*y(x) + x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x^{\sqrt [4]{\left (\operatorname {re}{\left (a\right )}\right )^{2} + \left (\operatorname {im}{\left (a\right )}\right )^{2}} \cos {\left (\frac {\operatorname {atan}_{2}{\left (- \operatorname {im}{\left (a\right )},- \operatorname {re}{\left (a\right )} \right )}}{2} \right )}} \left (C_{3} \sin {\left (\sqrt [4]{\left (\operatorname {re}{\left (a\right )}\right )^{2} + \left (\operatorname {im}{\left (a\right )}\right )^{2}} \log {\left (x \right )} \left |{\sin {\left (\frac {\operatorname {atan}_{2}{\left (- \operatorname {im}{\left (a\right )},- \operatorname {re}{\left (a\right )} \right )}}{2} \right )}}\right | \right )} + C_{4} \cos {\left (\sqrt [4]{\left (\operatorname {re}{\left (a\right )}\right )^{2} + \left (\operatorname {im}{\left (a\right )}\right )^{2}} \log {\left (x \right )} \sin {\left (\frac {\operatorname {atan}_{2}{\left (- \operatorname {im}{\left (a\right )},- \operatorname {re}{\left (a\right )} \right )}}{2} \right )} \right )}\right ) + x^{- \sqrt [4]{\left (\operatorname {re}{\left (a\right )}\right )^{2} + \left (\operatorname {im}{\left (a\right )}\right )^{2}} \cos {\left (\frac {\operatorname {atan}_{2}{\left (- \operatorname {im}{\left (a\right )},- \operatorname {re}{\left (a\right )} \right )}}{2} \right )}} \left (C_{1} \sin {\left (\sqrt [4]{\left (\operatorname {re}{\left (a\right )}\right )^{2} + \left (\operatorname {im}{\left (a\right )}\right )^{2}} \log {\left (x \right )} \left |{\sin {\left (\frac {\operatorname {atan}_{2}{\left (- \operatorname {im}{\left (a\right )},- \operatorname {re}{\left (a\right )} \right )}}{2} \right )}}\right | \right )} + C_{2} \cos {\left (\sqrt [4]{\left (\operatorname {re}{\left (a\right )}\right )^{2} + \left (\operatorname {im}{\left (a\right )}\right )^{2}} \log {\left (x \right )} \sin {\left (\frac {\operatorname {atan}_{2}{\left (- \operatorname {im}{\left (a\right )},- \operatorname {re}{\left (a\right )} \right )}}{2} \right )} \right )}\right ) \]