54.3.177 problem 1191

Internal problem ID [12472]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1191
Date solved : Wednesday, October 01, 2025 at 01:45:32 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y&=0 \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 23
ode:=x^2*diff(diff(y(x),x),x)+x^2*diff(y(x),x)-2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1 \left (x -2\right )+c_2 \,{\mathrm e}^{-x} \left (x +2\right )}{x} \]
Mathematica. Time used: 0.03 (sec). Leaf size: 72
ode=-2*y[x] + x^2*D[y[x],x] + x^2*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {e^{-x/2} \left (2 (i c_2 x+2 c_1) \sinh \left (\frac {x}{2}\right )-2 (c_1 x+2 i c_2) \cosh \left (\frac {x}{2}\right )\right )}{\sqrt {\pi } \sqrt {-i x} \sqrt {x}} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), x) + x**2*Derivative(y(x), (x, 2)) - 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False