54.3.179 problem 1193

Internal problem ID [12474]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1193
Date solved : Wednesday, October 01, 2025 at 01:45:33 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }+\left (x -9\right ) y&=0 \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 38
ode:=x^2*diff(diff(y(x),x),x)+x*(1+x)*diff(y(x),x)+(x-9)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1 \left (x^{2}-8 x +20\right )+c_2 \,{\mathrm e}^{-x} \left (x^{3}+9 x^{2}+36 x +60\right )}{x^{3}} \]
Mathematica. Time used: 0.298 (sec). Leaf size: 96
ode=(-9 + x)*y[x] + x*(1 + x)*D[y[x],x] + x^2*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {\left (x^2-8 x+20\right ) \exp \left (\int _1^x\frac {K[1]-5}{2 K[1]}dK[1]-\frac {x}{2}\right ) \left (c_2 \int _1^x\frac {\exp \left (-2 \int _1^{K[2]}\frac {K[1]-5}{2 K[1]}dK[1]\right )}{\left (K[2]^2-8 K[2]+20\right )^2}dK[2]+c_1\right )}{\sqrt {x}} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*(x + 1)*Derivative(y(x), x) + (x - 9)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False