54.3.181 problem 1195

Internal problem ID [12476]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1195
Date solved : Friday, October 03, 2025 at 03:19:21 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+\left (x +3\right ) x y^{\prime }-y&=0 \end{align*}
Maple. Time used: 0.050 (sec). Leaf size: 93
ode:=x^2*diff(diff(y(x),x),x)+(x+3)*x*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {\left (-c_1 \left (\sqrt {2}+x +1\right ) \operatorname {BesselI}\left (-\frac {1}{2}+\sqrt {2}, \frac {x}{2}\right )-c_1 \left (-\sqrt {2}+x +1\right ) \operatorname {BesselI}\left (\frac {1}{2}+\sqrt {2}, \frac {x}{2}\right )+\left (\left (-\sqrt {2}-x -1\right ) \operatorname {BesselK}\left (-\frac {1}{2}+\sqrt {2}, \frac {x}{2}\right )+\operatorname {BesselK}\left (\frac {1}{2}+\sqrt {2}, \frac {x}{2}\right ) \left (-\sqrt {2}+x +1\right )\right ) c_2 \right ) {\mathrm e}^{-\frac {x}{2}}}{\sqrt {x}} \]
Mathematica. Time used: 0.164 (sec). Leaf size: 74
ode=-y[x] + x*(3 + x)*D[y[x],x] + x^2*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \left (c_1 \operatorname {HypergeometricU}\left (2+\sqrt {2},1+2 \sqrt {2},x\right )+c_2 L_{-2-\sqrt {2}}^{2 \sqrt {2}}(x)\right ) \exp \left (\int _1^x\frac {-K[1]+\sqrt {2}-1}{K[1]}dK[1]\right ) \end{align*}
Sympy. Time used: 0.867 (sec). Leaf size: 473
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*(x + 3)*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \text {Solution too large to show} \]