Internal
problem
ID
[12482]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1201
Date
solved
:
Wednesday, October 01, 2025 at 01:45:39 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)+x*(2*x+1)*diff(y(x),x)-4*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=-4*y[x] + x*(1 + 2*x)*D[y[x],x] + x^2*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*(2*x + 1)*Derivative(y(x), x) - 4*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)