54.3.196 problem 1210

Internal problem ID [12491]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1210
Date solved : Friday, October 03, 2025 at 03:19:28 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }-2 x \left (x^{2}-a \right ) y^{\prime }+\left (2 n \,x^{2}+\left (\left (-1\right )^{n}-1\right ) a \right ) y&=0 \end{align*}
Maple. Time used: 0.161 (sec). Leaf size: 81
ode:=x^2*diff(diff(y(x),x),x)-2*x*(x^2-a)*diff(y(x),x)+(2*n*x^2+((-1)^n-1)*a)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x^{-a -\frac {1}{2}} {\mathrm e}^{\frac {x^{2}}{2}} \left (\operatorname {WhittakerW}\left (\frac {a}{2}+\frac {n}{2}+\frac {1}{4}, \frac {\sqrt {1-4 a \left (-1\right )^{n}+4 a^{2}}}{4}, x^{2}\right ) c_2 +\operatorname {WhittakerM}\left (\frac {a}{2}+\frac {n}{2}+\frac {1}{4}, \frac {\sqrt {1-4 a \left (-1\right )^{n}+4 a^{2}}}{4}, x^{2}\right ) c_1 \right ) \]
Mathematica. Time used: 0.195 (sec). Leaf size: 231
ode=((-1 + (-1)^n)*a + 2*n*x^2)*y[x] - 2*x*(-a + x^2)*D[y[x],x] + x^2*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to i^{-a} (-1)^{\frac {1}{4} \left (1-\sqrt {4 a^2-4 a (-1)^n+1}\right )} x^{\frac {1}{2} \left (-\sqrt {4 a^2-4 a (-1)^n+1}-2 a+1\right )} \left (c_1 \operatorname {Hypergeometric1F1}\left (\frac {1}{4} \left (-2 a-2 n-\sqrt {4 a^2-4 (-1)^n a+1}+1\right ),1-\frac {1}{2} \sqrt {4 a^2-4 (-1)^n a+1},x^2\right )+c_2 i^{\sqrt {4 a^2-4 a (-1)^n+1}} x^{\sqrt {4 a^2-4 a (-1)^n+1}} \operatorname {Hypergeometric1F1}\left (\frac {1}{4} \left (-2 a-2 n+\sqrt {4 a^2-4 (-1)^n a+1}+1\right ),\frac {1}{2} \left (\sqrt {4 a^2-4 (-1)^n a+1}+2\right ),x^2\right )\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
n = symbols("n") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) - 2*x*(-a + x**2)*Derivative(y(x), x) + (a*((-1)**n - 1) + 2*n*x**2)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
ValueError : Expected Expr or iterable but got None