Internal
problem
ID
[12491]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1210
Date
solved
:
Friday, October 03, 2025 at 03:19:28 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)-2*x*(x^2-a)*diff(y(x),x)+(2*n*x^2+((-1)^n-1)*a)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=((-1 + (-1)^n)*a + 2*n*x^2)*y[x] - 2*x*(-a + x^2)*D[y[x],x] + x^2*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") n = symbols("n") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - 2*x*(-a + x**2)*Derivative(y(x), x) + (a*((-1)**n - 1) + 2*n*x**2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
ValueError : Expected Expr or iterable but got None