54.3.241 problem 1257

Internal problem ID [12536]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1257
Date solved : Wednesday, October 01, 2025 at 01:57:17 AM
CAS classification : [[_2nd_order, _missing_y]]

\begin{align*} x \left (x -1\right ) y^{\prime \prime }+\left (\left (a +1\right ) x +b \right ) y^{\prime }&=0 \end{align*}
Maple. Time used: 0.008 (sec). Leaf size: 27
ode:=x*(x-1)*diff(diff(y(x),x),x)+((a+1)*x+b)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 +x^{b +1} \operatorname {hypergeom}\left (\left [b +1, b +a +1\right ], \left [2+b \right ], x\right ) c_2 \]
Mathematica. Time used: 0.034 (sec). Leaf size: 48
ode=(b + (1 + a)*x)*D[y[x],x] + (-1 + x)*x*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \int _1^x\exp \left (\int _1^{K[2]}\frac {b+a K[1]+K[1]}{K[1]-K[1]^2}dK[1]\right ) c_1dK[2]+c_2 \end{align*}
Sympy. Time used: 0.305 (sec). Leaf size: 139
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(x*(x - 1)*Derivative(y(x), (x, 2)) + (b + x*(a + 1))*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + x^{\frac {- \left (\operatorname {re}{\left (x\right )} - 1\right ) \left (\operatorname {re}{\left (b\right )} + \operatorname {re}{\left (a x\right )} + 1\right ) - \left (\operatorname {im}{\left (b\right )} + \operatorname {im}{\left (a x\right )}\right ) \operatorname {im}{\left (x\right )}}{\left (\operatorname {re}{\left (x\right )} - 1\right )^{2} + \left (\operatorname {im}{\left (x\right )}\right )^{2}}} \left (C_{2} \sin {\left (\frac {\log {\left (x \right )} \left |{\left (\operatorname {re}{\left (x\right )} - 1\right ) \left (\operatorname {im}{\left (b\right )} + \operatorname {im}{\left (a x\right )}\right ) - \left (\operatorname {re}{\left (b\right )} + \operatorname {re}{\left (a x\right )} + 1\right ) \operatorname {im}{\left (x\right )}}\right |}{\left (\operatorname {re}{\left (x\right )} - 1\right )^{2} + \left (\operatorname {im}{\left (x\right )}\right )^{2}} \right )} + C_{3} \cos {\left (\frac {\left (\left (\operatorname {re}{\left (x\right )} - 1\right ) \left (\operatorname {im}{\left (b\right )} + \operatorname {im}{\left (a x\right )}\right ) - \left (\operatorname {re}{\left (b\right )} + \operatorname {re}{\left (a x\right )} + 1\right ) \operatorname {im}{\left (x\right )}\right ) \log {\left (x \right )}}{\left (\operatorname {re}{\left (x\right )} - 1\right )^{2} + \left (\operatorname {im}{\left (x\right )}\right )^{2}} \right )}\right ) \]