Internal
problem
ID
[12546]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1267
Date
solved
:
Wednesday, October 01, 2025 at 02:06:30 AM
CAS
classification
:
[[_2nd_order, _exact, _linear, _homogeneous]]
ode:=2*x^2*diff(diff(y(x),x),x)-(2*x^2+l-5*x)*diff(y(x),x)-(4*x-1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(1 - 4*x)*y[x] - (l - 5*x + 2*x^2)*D[y[x],x] + 2*x^2*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") l = symbols("l") y = Function("y") ode = Eq(2*x**2*Derivative(y(x), (x, 2)) - (4*x - 1)*y(x) - (l + 2*x**2 - 5*x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (2*x**2*Derivative(y(x), (x, 2)) - 4*x*y(x) + y(x))/(l + 2*x**2 - 5*x) cannot be solved by the factorable group method