54.3.259 problem 1275

Internal problem ID [12554]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1275
Date solved : Friday, October 03, 2025 at 03:38:17 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (-x^{2}+2 \left (1-m +2 l \right ) x -m^{2}+1\right ) y&=0 \end{align*}
Maple. Time used: 0.052 (sec). Leaf size: 53
ode:=4*x^2*diff(diff(y(x),x),x)+4*x*diff(y(x),x)+(-x^2+2*(1-m+2*l)*x-m^2+1)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1 \operatorname {WhittakerM}\left (l -\frac {m}{2}+\frac {1}{2}, \frac {\sqrt {m +1}\, \sqrt {m -1}}{2}, x\right )+c_2 \operatorname {WhittakerW}\left (l -\frac {m}{2}+\frac {1}{2}, \frac {\sqrt {m +1}\, \sqrt {m -1}}{2}, x\right )}{\sqrt {x}} \]
Mathematica. Time used: 0.052 (sec). Leaf size: 97
ode=(1 - m^2 + 2*(1 + 2*l - m)*x - x^2)*y[x] + 4*x*D[y[x],x] + 4*x^2*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-x/2} x^{\frac {\sqrt {m^2-1}}{2}} \left (c_1 \operatorname {HypergeometricU}\left (\frac {1}{2} \left (-2 l+m+\sqrt {m^2-1}\right ),\sqrt {m^2-1}+1,x\right )+c_2 L_{l-\frac {m}{2}-\frac {\sqrt {m^2-1}}{2}}^{\sqrt {m^2-1}}(x)\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
l = symbols("l") 
m = symbols("m") 
y = Function("y") 
ode = Eq(4*x**2*Derivative(y(x), (x, 2)) + 4*x*Derivative(y(x), x) + (-m**2 - x**2 + x*(4*l - 2*m + 2) + 1)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
ValueError : Expected Expr or iterable but got None