Internal
problem
ID
[12563]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1284
Date
solved
:
Wednesday, October 01, 2025 at 02:06:44 AM
CAS
classification
:
[[_2nd_order, _exact, _linear, _nonhomogeneous]]
ode:=(2*x+1)^2*diff(diff(y(x),x),x)-2*(2*x+1)*diff(y(x),x)-12*y(x)-3*x-1 = 0; dsolve(ode,y(x), singsol=all);
ode=-1 - 3*x - 12*y[x] - 2*(1 + 2*x)*D[y[x],x] + (1 + 2*x)^2*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-3*x + (2*x + 1)**2*Derivative(y(x), (x, 2)) - (4*x + 2)*Derivative(y(x), x) - 12*y(x) - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (4*x**2*Derivative(y(x), (x, 2)) + 4*x*Derivative(y(x), (x, 2)) - 3*x - 12*y(x) + Derivative(y(x), (x, 2)) - 1)/(2*(2*x + 1)) cannot be solved by the factorable group method