54.3.271 problem 1287

Internal problem ID [12566]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1287
Date solved : Wednesday, October 01, 2025 at 02:06:48 AM
CAS classification : [_Jacobi]

\begin{align*} 9 x \left (x -1\right ) y^{\prime \prime }+3 \left (2 x -1\right ) y^{\prime }-20 y&=0 \end{align*}
Maple. Time used: 0.005 (sec). Leaf size: 27
ode:=9*x*(x-1)*diff(diff(y(x),x),x)+3*(2*x-1)*diff(y(x),x)-20*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \left (6 x -5\right ) x^{{2}/{3}}+c_2 \left (6 x -1\right ) \left (x -1\right )^{{2}/{3}} \]
Mathematica. Time used: 0.301 (sec). Leaf size: 93
ode=-20*y[x] + 3*(-1 + 2*x)*D[y[x],x] + 9*(-1 + x)*x*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {\left (3 c_2 (x-1) \operatorname {Gamma}\left (\frac {4}{3}\right ) Q_1^{\frac {2}{3}}(2 x-1)+c_1 (5-6 x) (1-x)^{2/3} \sqrt [3]{x}\right ) \exp \left (\int _1^x\frac {1-2 K[1]}{3 K[1]-3 K[1]^2}dK[1]\right )}{3 (x-1) \operatorname {Gamma}\left (\frac {4}{3}\right )} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(9*x*(x - 1)*Derivative(y(x), (x, 2)) + (6*x - 3)*Derivative(y(x), x) - 20*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False