54.3.283 problem 1300

Internal problem ID [12578]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1300
Date solved : Wednesday, October 01, 2025 at 02:09:54 AM
CAS classification : [_Gegenbauer]

\begin{align*} \left (a^{2} x^{2}-1\right ) y^{\prime \prime }+2 a^{2} x y^{\prime }-2 a^{2} y&=0 \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 31
ode:=(a^2*x^2-1)*diff(diff(y(x),x),x)+2*a^2*x*diff(y(x),x)-2*a^2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_2 a \ln \left (a x -1\right ) x}{2}-\frac {c_2 a \ln \left (a x +1\right ) x}{2}+c_1 x +c_2 \]
Mathematica. Time used: 0.017 (sec). Leaf size: 39
ode=-2*a^2*y[x] + 2*a^2*x*D[y[x],x] + (-1 + a^2*x^2)*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to a c_1 x-\frac {1}{2} c_2 (a x \log (1-a x)-a x \log (a x+1)+2) \end{align*}
Sympy. Time used: 0.371 (sec). Leaf size: 104
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(2*a**2*x*Derivative(y(x), x) - 2*a**2*y(x) + (a**2*x**2 - 1)*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {\left (a^{2} x^{2} - 1\right )^{\frac {3}{4}} \left (C_{1} \sqrt {\frac {a^{2} x^{2}}{a^{2} x^{2} - 1}} {{}_{2}F_{1}\left (\begin {matrix} 0, 0 \\ \frac {3}{2} \end {matrix}\middle | {\frac {a^{2} x^{2}}{a^{2} x^{2} - 1}} \right )} + C_{2} {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, - \frac {1}{2} \\ \frac {1}{2} \end {matrix}\middle | {\frac {a^{2} x^{2}}{a^{2} x^{2} - 1}} \right )}\right ) \sqrt [4]{x^{2}}}{\sqrt {x} \sqrt [4]{x^{2} - \frac {1}{a^{2}}}} \]