Internal
problem
ID
[12584]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1306
Date
solved
:
Friday, October 03, 2025 at 03:38:31 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^3*diff(diff(y(x),x),x)+x^2*diff(y(x),x)+(a*x^2+b*x+a)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(a + b*x + a*x^2)*y[x] + x^2*D[y[x],x] + x^3*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 2)) + x**2*Derivative(y(x), x) + (a*x**2 + a + b*x)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE a*y(x) + a*y(x)/x**2 + b*y(x)/x + x*Derivative(y(x), (x, 2)) + Derivative(y(x), x) cannot be solved by the factorable group method