Internal
problem
ID
[12592]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1314
Date
solved
:
Friday, October 03, 2025 at 03:38:36 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x*(x^2+1)*diff(diff(y(x),x),x)-(2*(n-1)*x^2+2*n-1)*diff(y(x),x)+(v+n)*(-v+n-1)*x*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(-1 + n - v)*(n + v)*x*y[x] - (-1 + 2*n + 2*(-1 + n)*x^2)*D[y[x],x] + x*(1 + x^2)*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") n = symbols("n") v = symbols("v") y = Function("y") ode = Eq(x*(n + v)*(n - v - 1)*y(x) + x*(x**2 + 1)*Derivative(y(x), (x, 2)) - (2*n + x**2*(2*n - 2) - 1)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False