54.3.297 problem 1314

Internal problem ID [12592]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1314
Date solved : Friday, October 03, 2025 at 03:38:36 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x \left (x^{2}+1\right ) y^{\prime \prime }-\left (2 \left (n -1\right ) x^{2}+2 n -1\right ) y^{\prime }+\left (v +n \right ) \left (-v +n -1\right ) x y&=0 \end{align*}
Maple. Time used: 0.033 (sec). Leaf size: 33
ode:=x*(x^2+1)*diff(diff(y(x),x),x)-(2*(n-1)*x^2+2*n-1)*diff(y(x),x)+(v+n)*(-v+n-1)*x*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x^{n} \left (\operatorname {LegendreQ}\left (v , n , \sqrt {x^{2}+1}\right ) c_2 +\operatorname {LegendreP}\left (v , n , \sqrt {x^{2}+1}\right ) c_1 \right ) \]
Mathematica. Time used: 0.154 (sec). Leaf size: 75
ode=(-1 + n - v)*(n + v)*x*y[x] - (-1 + 2*n + 2*(-1 + n)*x^2)*D[y[x],x] + x*(1 + x^2)*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 \operatorname {Hypergeometric2F1}\left (\frac {1}{2} (-n-v),\frac {1}{2} (-n+v+1),1-n,-x^2\right )+c_2 x^{2 n} \operatorname {Hypergeometric2F1}\left (\frac {n-v}{2},\frac {1}{2} (n+v+1),n+1,-x^2\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
n = symbols("n") 
v = symbols("v") 
y = Function("y") 
ode = Eq(x*(n + v)*(n - v - 1)*y(x) + x*(x**2 + 1)*Derivative(y(x), (x, 2)) - (2*n + x**2*(2*n - 2) - 1)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False