1.5.14 problem 14

Internal problem ID [118]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 1. First order differential equations. Section 1.6 (substitution and exact equations). Problems at page 72
Problem number : 14
Date solved : Tuesday, September 30, 2025 at 03:44:18 AM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} y y^{\prime }+x&=\sqrt {x^{2}+y^{2}} \end{align*}
Maple. Time used: 0.117 (sec). Leaf size: 27
ode:=y(x)*diff(y(x),x)+x = (x^2+y(x)^2)^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\[ \frac {-c_1 y^{2}+\sqrt {x^{2}+y^{2}}+x}{y^{2}} = 0 \]
Mathematica. Time used: 0.239 (sec). Leaf size: 57
ode=y[x]*D[y[x],x]+x==Sqrt[x^2+y[x]^2]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -e^{\frac {c_1}{2}} \sqrt {2 x+e^{c_1}}\\ y(x)&\to e^{\frac {c_1}{2}} \sqrt {2 x+e^{c_1}}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 51.366 (sec). Leaf size: 235
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x - sqrt(x**2 + y(x)**2) + y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {- C_{1} - 2 \sqrt {2} x \sqrt {- C_{1}}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {- C_{1} - 2 \sqrt {2} x \sqrt {- C_{1}}}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {- C_{1} + 2 \sqrt {2} x \sqrt {- C_{1}}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {- C_{1} + 2 \sqrt {2} x \sqrt {- C_{1}}}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {- 2 \sqrt {2} \sqrt {C_{1}} x + C_{1}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {- 2 \sqrt {2} \sqrt {C_{1}} x + C_{1}}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {2 \sqrt {2} \sqrt {C_{1}} x + C_{1}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {2 \sqrt {2} \sqrt {C_{1}} x + C_{1}}}{2}\right ] \]