Internal
problem
ID
[12607]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1329
Date
solved
:
Friday, October 03, 2025 at 03:43:12 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = -((alpha+beta+1)*x^2-(alpha+beta+1+a*(gamma+delta)-delta)*x+a*gamma)/x/(x-1)/(x-a)*diff(y(x),x)-(alpha*beta*x-q)/x/(x-1)/(x-a)*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == -(((-q + \[Alpha]*\[Beta]*x)*y[x])/((-1 + x)*x*(-a + x))) - ((a*\[Gamma] - (1 + \[Alpha] +\[Beta] - \[Delta] + a*(\[Delta] + \[Gamma]))*x + (1 + \[Alpha] + \[Beta])*x^2)*D[y[x],x])/((-1 + x)*x*(-a + x)); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") Alpha = symbols("Alpha") BETA = symbols("BETA") Gamma = symbols("Gamma") a = symbols("a") delta = symbols("delta") q = symbols("q") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) + (Alpha*BETA*x - q)*y(x)/(x*(-a + x)*(x - 1)) + (Gamma*a + x**2*(Alpha + BETA + 1) - x*(Alpha + BETA + a*(Gamma + delta) - delta + 1))*Derivative(y(x), x)/(x*(-a + x)*(x - 1)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
ValueError : Expected Expr or iterable but got None