Internal
problem
ID
[12613]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1335
Date
solved
:
Friday, October 03, 2025 at 03:43:21 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = -1/2/x*(3*x-1)/(x-1)*diff(y(x),x)-1/4*(a*x+b)/x/(x-1)^2*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == -1/4*((b + a*x)*y[x])/((-1 + x)^2*x) - ((-1 + 3*x)*D[y[x],x])/(2*(-1 + x)*x); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) + (3*x - 1)*Derivative(y(x), x)/(2*x*(x - 1)) + (a*x + b)*y(x)/(4*x*(x - 1)**2),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False