Internal
problem
ID
[12632]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1354
Date
solved
:
Wednesday, October 01, 2025 at 02:18:36 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = 1/x^3*(2*x^2-1)*diff(y(x),x)-2/x^4*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == (-2*y[x])/x^4 + ((-1 + 2*x^2)*D[y[x],x])/x^3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) - (2*x**2 - 1)*Derivative(y(x), x)/x**3 + 2*y(x)/x**4,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x**4*Derivative(y(x), (x, 2)) + 2*y(x))/(2*x**3 - x) cannot be solved by the factorable group method