54.3.342 problem 1359

Internal problem ID [12637]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1359
Date solved : Friday, October 03, 2025 at 03:45:21 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}-1}-\frac {v \left (v +1\right ) y}{x^{2} \left (x^{2}-1\right )} \end{align*}
Maple. Time used: 0.043 (sec). Leaf size: 57
ode:=diff(diff(y(x),x),x) = -2*x/(x^2-1)*diff(y(x),x)-v*(v+1)/x^2/(x^2-1)*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,x^{-v} \operatorname {hypergeom}\left (\left [-\frac {v}{2}, \frac {1}{2}-\frac {v}{2}\right ], \left [\frac {1}{2}-v \right ], x^{2}\right )+c_2 \,x^{v +1} \operatorname {hypergeom}\left (\left [1+\frac {v}{2}, \frac {1}{2}+\frac {v}{2}\right ], \left [\frac {3}{2}+v \right ], x^{2}\right ) \]
Mathematica. Time used: 0.088 (sec). Leaf size: 84
ode=D[y[x],{x,2}] == -((v*(1 + v)*y[x])/(x^2*(-1 + x^2))) - (2*x*D[y[x],x])/(-1 + x^2); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 i^{-v} x^{-v} \operatorname {Hypergeometric2F1}\left (\frac {1}{2}-\frac {v}{2},-\frac {v}{2},\frac {1}{2}-v,x^2\right )+c_2 i^{v+1} x^{v+1} \operatorname {Hypergeometric2F1}\left (\frac {v+1}{2},\frac {v+2}{2},v+\frac {3}{2},x^2\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
v = symbols("v") 
y = Function("y") 
ode = Eq(v*(v + 1)*y(x)/(x**2*(x**2 - 1)) + 2*x*Derivative(y(x), x)/(x**2 - 1) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
ValueError : Expected Expr or iterable but got None