Internal
problem
ID
[12671]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1393
Date
solved
:
Friday, October 03, 2025 at 03:45:45 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = -(b*x^2+c*x+d)/a/x^2/(x-1)^2*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == -(((d + c*x + b*x^2)*y[x])/(a*(-1 + x)^2*x^2)); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") d = symbols("d") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) + (b*x**2 + c*x + d)*y(x)/(a*x**2*(x - 1)**2),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), (x, 2)) + (b*x**2 + c*x + d)*y(x)/(a*x**2*(x - 1)**2) cannot be solved by the hypergeometric method