Internal
problem
ID
[12677]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1399
Date
solved
:
Wednesday, October 01, 2025 at 02:19:30 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = 1/(x-1)*(3*x+1)/(1+x)*diff(y(x),x)-36*(1+x)^2/(x-1)^2/(3*x+5)^2*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == (-36*(1 + x)^2*y[x])/((-1 + x)^2*(5 + 3*x)^2) + ((1 + 3*x)*D[y[x],x])/((-1 + x)*(1 + x)); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) - (3*x + 1)*Derivative(y(x), x)/((x - 1)*(x + 1)) + 36*(x + 1)**2*y(x)/((x - 1)**2*(3*x + 5)**2),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False