Internal
problem
ID
[12679]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1401
Date
solved
:
Wednesday, October 01, 2025 at 02:19:31 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = -1/x^3*(3*x^2+a)*diff(y(x),x)-b/x^6*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == -((b*y[x])/x^6) - ((a + 3*x^2)*D[y[x],x])/x^3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(b*y(x)/x**6 + Derivative(y(x), (x, 2)) + (a + 3*x**2)*Derivative(y(x), x)/x**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-b*y(x) - x**6*Derivative(y(x), (x, 2)))/(x**3*(a + 3*x**2)) cannot be solved by the factorable group method