Internal
problem
ID
[12686]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1408
Date
solved
:
Wednesday, October 01, 2025 at 02:19:56 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = -(x^2*((x^2-a1)*(x^2-a2)+(x^2-a2)*(x^2-a3)+(x^2-a3)*(x^2-a1))-(x^2-a1)*(x^2-a2)*(x^2-a3))/x/(x^2-a1)/(x^2-a2)/(x^2-a3)*diff(y(x),x)-(A*x^2+B)/x/(x^2-a1)/(x^2-a2)/(x^2-a3)*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == -(((B + A*x^2)*y[x])/(x*(-a1 + x^2)*(-a2 + x^2)*(-a3 + x^2))) - (((a1 - x^2)*(-a2 + x^2)*(-a3 + x^2) + x^2*((-a1 + x^2)*(-a2 + x^2) + (-a1 + x^2)*(-a3 + x^2) + (-a2 + x^2)*(-a3 + x^2)))*D[y[x],x])/(x*(-a1 + x^2)*(-a2 + x^2)*(-a3 + x^2)); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") A = symbols("A") B = symbols("B") a1 = symbols("a1") a2 = symbols("a2") a3 = symbols("a3") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) + (A*x**2 + B)*y(x)/(x*(-a1 + x**2)*(-a2 + x**2)*(-a3 + x**2)) + (x**2*((-a1 + x**2)*(-a2 + x**2) + (-a1 + x**2)*(-a3 + x**2) + (-a2 + x**2)*(-a3 + x**2)) - (-a1 + x**2)*(-a2 + x**2)*(-a3 + x**2))*Derivative(y(x), x)/(x*(-a1 + x**2)*(-a2 + x**2)*(-a3 + x**2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False