Internal
problem
ID
[12688]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1410
Date
solved
:
Friday, October 03, 2025 at 03:46:11 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = -(a*p*x^b+q)/x/(a*x^b-1)*diff(y(x),x)-(a*r*x^b+s)/x^2/(a*x^b-1)*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == -(((s + a*r*x^b)*y[x])/(x^2*(-1 + a*x^b))) - ((q + a*p*x^b)*D[y[x],x])/(x*(-1 + a*x^b)); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") p = symbols("p") q = symbols("q") r = symbols("r") s = symbols("s") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) + (a*p*x**b + q)*Derivative(y(x), x)/(x*(a*x**b - 1)) + (a*r*x**b + s)*y(x)/(x**2*(a*x**b - 1)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
TypeError : Symbol object cannot be interpreted as an integer