54.3.417 problem 1434

Internal problem ID [12712]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1434
Date solved : Friday, October 03, 2025 at 03:46:56 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }&=-\frac {b \cos \left (x \right ) y^{\prime }}{\sin \left (x \right ) a}-\frac {\left (c \cos \left (x \right )^{2}+d \cos \left (x \right )+e \right ) y}{a \sin \left (x \right )^{2}} \end{align*}
Maple. Time used: 0.343 (sec). Leaf size: 506
ode:=diff(diff(y(x),x),x) = -b/sin(x)*cos(x)/a*diff(y(x),x)-(c*cos(x)^2+d*cos(x)+e)/a/sin(x)^2*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\sin \left (x \right )^{-\frac {a +b}{2 a}} \cos \left (\frac {x}{2}\right ) \left (\cos \left (\frac {x}{2}\right )^{-\frac {\sqrt {a^{2}+\left (-2 b -4 c +4 d -4 e \right ) a +b^{2}}}{2 a}} \operatorname {hypergeom}\left (\left [\frac {\sqrt {a^{2}+\left (-2 b -4 c -4 d -4 e \right ) a +b^{2}}-2 i \sqrt {4 a c -b^{2}}-\sqrt {a^{2}+\left (-2 b -4 c +4 d -4 e \right ) a +b^{2}}+2 a}{4 a}, \frac {\sqrt {a^{2}+\left (-2 b -4 c -4 d -4 e \right ) a +b^{2}}+2 i \sqrt {4 a c -b^{2}}-\sqrt {a^{2}+\left (-2 b -4 c +4 d -4 e \right ) a +b^{2}}+2 a}{4 a}\right ], \left [1-\frac {\sqrt {a^{2}+\left (-2 b -4 c +4 d -4 e \right ) a +b^{2}}}{2 a}\right ], \frac {\cos \left (x \right )}{2}+\frac {1}{2}\right ) c_1 +\cos \left (\frac {x}{2}\right )^{\frac {\sqrt {a^{2}+\left (-2 b -4 c +4 d -4 e \right ) a +b^{2}}}{2 a}} \operatorname {hypergeom}\left (\left [\frac {\sqrt {a^{2}+\left (-2 b -4 c -4 d -4 e \right ) a +b^{2}}-2 i \sqrt {4 a c -b^{2}}+\sqrt {a^{2}+\left (-2 b -4 c +4 d -4 e \right ) a +b^{2}}+2 a}{4 a}, \frac {\sqrt {a^{2}+\left (-2 b -4 c -4 d -4 e \right ) a +b^{2}}+2 i \sqrt {4 a c -b^{2}}+\sqrt {a^{2}+\left (-2 b -4 c +4 d -4 e \right ) a +b^{2}}+2 a}{4 a}\right ], \left [1+\frac {\sqrt {a^{2}+\left (-2 b -4 c +4 d -4 e \right ) a +b^{2}}}{2 a}\right ], \frac {\cos \left (x \right )}{2}+\frac {1}{2}\right ) c_2 \right ) \sqrt {2 \cos \left (x \right )-2}\, \left (\frac {\cos \left (x \right )}{2}-\frac {1}{2}\right )^{\frac {\sqrt {a^{2}+\left (-2 b -4 c -4 d -4 e \right ) a +b^{2}}}{4 a}}}{2} \]
Mathematica. Time used: 160.889 (sec). Leaf size: 1596424
ode=D[y[x],{x,2}] == -(((e + d*Cos[x] + c*Cos[x]^2)*Csc[x]^2*y[x])/a) - (b*Cot[x]*D[y[x],x])/a; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Too large to display

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
d = symbols("d") 
e = symbols("e") 
y = Function("y") 
ode = Eq(Derivative(y(x), (x, 2)) + b*cos(x)*Derivative(y(x), x)/(a*sin(x)) + (c*cos(x)**2 + d*cos(x) + e)*y(x)/(a*sin(x)**2),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (-a*sin(x)**2*Derivative(y(x), (x, 2)) - e*y(x) - (c*cos(x) + d)*y(x)*cos(x))/(b*sin(x)*cos(x)) cannot be solved by the factorable group method