Internal
problem
ID
[12719]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1445
Date
solved
:
Friday, October 03, 2025 at 03:47:12 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = -(2*f(x)*diff(g(x),x)^2*g(x)-(g(x)^2-1)*(f(x)*diff(diff(g(x),x),x)+2*diff(f(x),x)*diff(g(x),x)))/f(x)/diff(g(x),x)/(g(x)^2-1)*diff(y(x),x)-((g(x)^2-1)*(diff(f(x),x)*(f(x)*diff(diff(g(x),x),x)+2*diff(f(x),x)*diff(g(x),x))-f(x)*diff(diff(f(x),x),x)*diff(g(x),x))-(2*diff(f(x),x)*g(x)+v*(v+1)*f(x)*diff(g(x),x))*f(x)*diff(g(x),x)^2)/f(x)^2/diff(g(x),x)/(g(x)^2-1)*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == -((D[y[x],x]*(2*f[x]*g[x]*Derivative[1][g][x]^2 - (-1 + g[x]^2)*(2*Derivative[1][f][x]*Derivative[1][g][x] + f[x]*Derivative[2][g][x])))/(f[x]*(-1 + g[x]^2)*Derivative[1][g][x])) - (y[x]*(-(f[x]*Derivative[1][g][x]^2*(2*g[x]*Derivative[1][f][x] + v*(1 + v)*f[x]*Derivative[1][g][x])) + (-1 + g[x]^2)*(-(f[x]*Derivative[1][g][x]*Derivative[2][f][x]) + Derivative[1][f][x]*(2*Derivative[1][f][x]*Derivative[1][g][x] + f[x]*Derivative[2][g][x]))))/(f[x]^2*(-1 + g[x]^2)*Derivative[1][g][x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") v = symbols("v") y = Function("y") f = Function("f") g = Function("g") ode = Eq((((f(x)*Derivative(g(x), (x, 2)) + 2*Derivative(f(x), x)*Derivative(g(x), x))*Derivative(f(x), x) - f(x)*Derivative(f(x), (x, 2))*Derivative(g(x), x))*(g(x)**2 - 1) - (v*(v + 1)*f(x)*Derivative(g(x), x) + 2*g(x)*Derivative(f(x), x))*f(x)*Derivative(g(x), x)**2)*y(x)/((g(x)**2 - 1)*f(x)**2*Derivative(g(x), x)) + ((-f(x)*Derivative(g(x), (x, 2)) - 2*Derivative(f(x), x)*Derivative(g(x), x))*(g(x)**2 - 1) + 2*f(x)*g(x)*Derivative(g(x), x)**2)*Derivative(y(x), x)/((g(x)**2 - 1)*f(x)*Derivative(g(x), x)) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
TypeError : cannot determine truth value of Relational: x > _n + 2